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LETTER TO THE EDITOR

A solvable replicator model

Olaf Stenull† and Heinz G Schuster
Institut für Theoretische Physik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15,
D-24098 Kiel, Germany

Received 22 December 1997

Abstract. We present a soluble variant of the replicator model well established in theoretical
biology and game theory. By using methods of statistical physics we derive an analytical solution
to our model which becomes exact in the long time limit. We apply our model to the iterated
prisoner’s dilemma game and compare our results to numerical simulations.

The replicator model describes the evolution of self-replicating entities, replicators, in
different areas of biological sciences, for example sociobiology, ecology, prebiotic evolution
and genetics [1, 2]. While it finds increasing interest, in particular in the context of dynamical
game theory, most investigations still essentially rely on numerical simulations [3, 5, 6].
Here we introduce a diluted version of the replicator dynamics and present an analytic
solution to our model.

As the original replicator model, our model describes the time evolution of a population
by a set of so-called game dynamical equations. The population consists ofn species, each
adopting a certain strategyi. The state of the population at time step (generation)t is
characterized by a vectorxt = (xt0, . . . , xtn−1) with xti being the fraction of the population

which belongs to speciesi (xti > 0,
∑n−1

i=0 x
t
i = 1). A pay-off matrixA = (Aij )n−1

ij=0 encodes
the interactions between the species.

In the original replicator model each species interacts with all members of the population
in every time step. In our diluted annealed [7] model we draw in each generation one specific
speciesj (t) randomly with equal probability out of the set{0, . . . , n−1}. Then all members
of the population interact withj (t). At the next time step a new species is drawn and so
on.

The pay-off of speciesi, Aij(t)xtj (t), is viewed as a measure of its reproductive success
(fitness) [8]. The offspring inherits its species strategy, and hence the growth rate of a
species is set proportional to its fitness. Accordingly, the time evolution of the entire
population is governed by

xt+1
i = xti Aij (t)x

t
j (t)∑n−1

i=0 x
t
i Aij (t)x

t
j (t)

i = 0, . . . , n− 1. (1)

Since the iterated prisoner’s dilemma has become the leading paradigm for the
emergence of cooperation in biological societies, we are in particular interested in the
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situation where the members of the population play this game. The prisoner’s dilemma
(PD) is a two-player game [9, 10]. The players have to opt simultaneously for one of the
two strategiesC (cooperate) orD (defect). If both players cooperate they receive a pay-off
of R points. The pay-off for joint defection isP points. An unilaterally defecting player
obtainsT points while his opponent ends up withS points. BecauseT > R > P > S and
R > (T + S)/2 (we useT = 5, R = 3, P = 1 andS = 0) a rational player will choose
D since this yields the higher pay-off no matter whether the opponent opts forC or D.
However, if there is a sufficiently high probability that the players will meet again there is
no longer a single best strategy for the iterated prisoner’s dilemma (IPD).

We consider a simple version of the IPD where strategies are entirely specified by the
outcome of the previous round. Such strategies are said to have one-step memory and
can be described by a quadruplepi := (pi1, pi2, pi3, pi4), where the components denote the
probabilities of cooperating after the outcome of the previous round wasR, S, T or P ,
respectively. If all components are either 0 or 1 such a strategy is deterministic. There are
16 deterministic strategies with one-step memory (which we label byi = 0, . . . ,15, with
the ith quadruple being the binary representation fori).

We take uncertainty into account by introducing a small probabilityε to misimplement
a move and replacing 1 by 1− ε and 0 byε in the deterministic strategies [11]. Ifε > 0
(we useε = 10−5) the game between two strategiesi andj can be modelled as a Markov
process with fully ranked transition matrix

pi1p
j

1 pi1(1− pj1) (1− pi1)pj1 (1− pi1)(1− pj1)
pi2p

j

3 pi2(1− pj3) (1− pi2)pj3 (1− pi2)(1− pj3)
pi3p

j

2 pi3(1− pj2) (1− pi3)pj2 (1− pi3)(1− pj2)
pi4p

j

4 pi4(1− pj4) (1− pi4)pj4 (1− pi4)(1− pj4)

 .
The stationary distributionπ : = (π1, π2, π3, π4) corresponds to the left-hand eigenvector of
the transition matrix with eigenvalue 1. The mean pay-off fori againstj can be calculated
as

Aij = Rπ1+ Sπ2+ T π3+ Pπ4.

The diluted model can be solved by iteration of equation (1) which yields

xti =
x0
i

∏t−1
τ=0Aij(τ)∑n−1

i=0 x
0
i

∏t−1
τ=0Aij(τ)

wherex0
i is the initial frequency of speciesi. Next we average over all possible realizations

of the sequence{j (τ )}t−1
τ=0 and obtain

〈xti 〉 =
1

n

n−1∑
j (0)=0

. . .
1

n

n−1∑
j (t−1)=0

x0
i

∏t−1
τ=0Aij(τ)∑n−1

i=0 x
0
i

∏t−1
τ=0Aij(τ)

. (2)

To perform the average it is convenient to introduce new summation variables
mi =

∑t−1
τ=0 δij (τ ), which count how oftenj (τ ) is equal toi for τ = 0, . . . , t − 1. With

these new variables equation (2) reads

〈xti 〉 =
∑
m1

. . .
∑
mn

x0
i

∏n−1
k=0A

mk
ik∑n−1

i=0 x
0
i

∏n−1
k=0A

mk
ik

P t (m0, . . . , mn−1). (3)

whereP t(m0, . . . , mn−1) is the multinomial distribution

P t(m0, . . . , mn−1) = t !

m0! . . . mn−1!

(
1

n

)t
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and the sum has to be taken over all combinations of themi ’s such that
∑

i mi = t . In
order to eliminate the denominator, we rewrite equation (3) as

〈xti 〉 = x0
i

∂

∂x0
i

∑
m0

. . .
∑
mn−1

ln

( n−1∑
j=0

x0
j

n−1∏
k=0

A
mk
jk

)
P t(m0, . . . , mn−1).

With the replica trick [12], which is based on the identity

lnZ = lim
l→0

Zl − 1

l

the average can be expressed as

〈xti 〉 = x0
i

∂

∂x0
i

lim
l→0

〈Zl〉 − 1

l
(4)

with

〈Zl〉 =
∑
m0

. . .
∑
mn−1

t !

m0! . . . mn−1!

(
1

n

)t( n−1∑
j=0

x0
j

n−1∑
k=0

A
mk
jk

)l

=
∑
m0

. . .
∑
mn−1

∑
l0

. . .
∑
ln−1

t !

m0! . . . mn−1!

l!

l0! . . . ln−1!

(
1

n

)t n−1∏
j=0

x0lj
j

n−1∏
k=0

A
mklj
jk (5)

where
∑
j lj = l. Equation (5) holds for reall if the factorials are interpreted as gamma

functions. It can be rearranged to

〈Zl〉 =
∑
l0

. . .
∑
ln−1

l!

l0! . . . ln−1!

(
1

n

)t( n−1∏
j=0

x0lj
j

)( n−1∑
k=0

n−1∏
j=0

A
lj
jk

)t
. (6)

At large times the average behaviour of our diluted model cannot be distinguished from the
situation that the strategies are chosen in a cyclic fashion. Hence the geometric mean enters
and we can rewrite equation (6) as

〈Zl〉 =
∑
l0

. . .
∑
ln−1

l!

l0! . . . ln−1!

( n−1∏
j=0

x0lj
j

)( n−1∑
k=0

n−1∏
j=0

A
lj
jk

)t/n
which leads to

〈Zl〉 =
( n−1∑
j=0

x0
j

n−1∏
k=0

A
t/n

jk

)l
. (7)

By substitution of equation (7) into (4) one obtains

〈xti 〉 =
x0
i (
∏n−1
k=0Aik)

t/n∑n−1
i=0 x

0
i (
∏n−1
k=0Aik)

t/n
. (8)

It is important to note that equation (8) is exact in the long time limit for arbitrary
A by virtue of the law of large numbers which implies limt→∞〈mi〉 = t/n for all i. For
small times how well the system is described by equation (8) it depends on the nature of
A. If the matrix elements are distributed with small fluctuations around an average value,
our solution will well describe the short time behaviour. For the IPD though, there are
significant deviations during equilibration (see figure 1).

From equation (8) it can be deduced that the strategy which corresponds to the largest
row product ofA dominates the asymptotic behaviour. It eventually takes over the
population for all possible initial conditions in which it is present. Hence our model has a
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Figure 1. Plot of xti , equation (8), for the IPD (bold curves). The thin curves are obtained by
averaging over 105 simulations based on equation (1) withx0

i = 1/16 for all i.

very low intrinsic cooperation pressure [13, 14] that drives the dynamics towards an edge of
the simplex on which it is defined. In the IPD the strategy AllD, which plays defect no matter
what the opponent does, takes over the population (see figure 1). The original replicator
dynamics on the other hand, admits a more complex asymptotic behaviour, including limit
cycles [4] and asymptotically stable populations of cooperative strategies.

Chance plays an important role in evolution. Our results indicate that randomness can
be incorporated into evolutionary models via dilution. Moreover, dilution may cast an
evolutionary model in a form that fosters an investigation by analytical means.
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